Interpretation of Arterial Blood Gases

Prof. Dr. W. Vincken
Head Respiratory Division
Academisch Ziekenhuis Vrije Universiteit Brussel (AZ VUB)
Before interpretation of ABG

- Make/Take note of
 - Correct puncture and transport
 - F_1O_2 : room air (0.21) or under O_2
 - Body posture : sitting or supine
 - At rest or during exercise
Arterial Blood Gases

- Measurement of oxygenation
 - $P_{a}O_{2}$
 - $S_{a}O_{2}$
 - $P_{A-a}O_{2}$

- Measurement of alveolar ventilation and acid-base status
 - $P_{a}CO_{2}$
 - pH
 - $[HCO_{3}^{-}]$
 - Base Excess (BE)
Normal Arterial Blood Gases

- Measurement of oxygenation
 - $P_{a}O_2$ 100 mmHg*
 - $S_{a}O_2$ 97 %
 - $P_{A-a}O_2$ <10 mmHg

* $P_{a}O_2 = 105 - (\text{age}/3)$
Normal Arterial Blood Gases

- Measurement of alveolar ventilation and acid-base status
 - $P_a\text{CO}_2$ 40 mmHg
 - pH 7.4
 - $[\text{HCO}_3^-]$ 24 mEq/L
 - Base Excess (BE) 0 mEq/L
Abnormal Arterial Blood Gases

- **Hyperoxemia**: high P_aO_2
 - No pathophysiological substrate
 - (except mild hyperoxemia in extreme alveolar hyperventilation)
 - Usually indicates
 - sampling error (air in blood sample) or
 - high F_1O_2 (oxygen administration)
Abnormal Arterial Blood Gases

- Hypoxemia: low P_aO_2
 - Desaturation: low S_aO_2
OXYHEMOGLOBIN DISSOCIATION CURVE

SO₂ (%)

CO₂ (vol %)

pH = 7.40
T = 37°C
PCO₂ = 40 mmHg
Hb = 15 gm/dl

PO₂ (mmHg)
Hypoxemia: causes?

Alveolo-arterial O_2 gradient

- $P_{A-a}O_2 = P_AO_2 - P_aO_2$
- $P_aO_2 = P_AO_2 - P_{A-a}O_2$
Hypoxemia: causes?

Alveolar gas equation

- \(P_{A\text{O}_2} = P_{I\text{O}_2} - \left[P_{A\text{CO}_2} / R \right] \)
- \(P_{A\text{O}_2} = \left[(P_b - P_{\text{H}_2\text{O}}) \times F_{I\text{O}_2} \right] - \left[P_{A\text{CO}_2} / R \right] \)

- \(P_{A\text{O}_2} = \) partial pressure of oxygen in alveolar air
- \(P_{I\text{O}_2} = \) partial pressure of oxygen in inspired air
- \(P_{A\text{CO}_2} = \) partial pressure of carbon dioxide in alveolar air
- \(R = \) respiratory exchange ratio = \(V_{CO_2}/V_{O_2} \)
- \(P_b = \) barometric pressure
- \(P_{H_2O} = \) partial pressure of water vapour in inspired air
- \(F_{I\text{O}_2} = \) fractional concentration of oxygen in inspired air
Hypoxemia: causes?

Alveolo-arterial O₂ gradient

- \(P_{A-a}O₂ \) (mmHg) = \(P_AO₂ - P_aO₂ \)
- \(P_AO₂ \) is calculated using the alveolar gas equation
 - \(P_AO₂ = P_{I}O₂ - [P_{A}CO₂ / R] \)
 - \(P_AO₂ = [(P_b - P_{H2O}) \times F_{I}O₂] - [P_{a}CO₂ / 0.8] \)
 - \(P_AO₂ = [(760 - 47) \times 0.21] - [P_{a}CO₂ \times 1.25] \)
 - \(P_AO₂ = 149 - [P_{a}CO₂ \times 1.25] \)
- \(P_aO₂ \) and \(P_aCO₂ \) are measured (ABG)
- Normal \(P_{A-a}O₂ \)
 - < 5 – 10 mmHg (up to 20 mmHg in elderly)
Hypoxemia: 3 main causes

- \[P_{A\,O_2} = [(P_b - P_{H2O}) \times F_{I\,O_2}] - [P_{A\,CO_2} / R] \]
- \[P_{A-a\,O_2} = P_{A\,O_2} - P_{a\,O_2} \]
- \[P_{a\,O_2} = P_{A\,O_2} - P_{A-a\,O_2} \]

- (1) Reduced \(P_{A\,O_2} \)
- (2) Increased \(P_{A-a\,O_2} \)
- (3) Reduced \(P_{v\,O_2} \)
Hypoxemia: causes (1)

- \(P_{A}O_{2} = [(P_{b} - P_{H2O}) \times F_{I}O_{2}] - [P_{A}CO_{2} / R] \)
- \(P_{a}O_{2} = P_{A}O_{2} - P_{A-a}O_{2} \)

- **Reduced \(P_{A}O_{2} \) (and normal \(P_{A-a}O_{2} \))**
 - Reduced \(P_{b} \): high altitude
 - Reduced \(F_{I}O_{2} \): inhalation of hypoxic gas mixtures
 - Increased \(P_{A}CO_{2} > \) hypercapnia
Hypoxemia: causes (2)

- $P_{A\ O_2} = [(P_b - P_{H_2O}) \times F_\text{I}O_2] - [P_{A\ CO_2} / R]$
- $P_{a\ O_2} = P_{A\ O_2} - P_{A-a\ O_2}$

- **Increased** $P_{A-a\ O_2}$
 - Failure of the lung as a gas exchanger
 - Oxygenation failure or Type I Respiratory Failure
 - Intrapulmonary mechanism/cause of hypoxemia

- Ventilation/perfusion mismatch
- Diffusion disturbance
- Right>Left shunt
Hypoxemia: causes (2)
Oxygenation Failure

- Ventilation/Perfusion mismatch
 - Obstructive lung diseases (COPD, asthma, ...)
 - Parenchymal lung disease (pneumonia, atelectasis, ILD, ...)
 - Vascular lung disease
Non-uniform ventilation normal perfusion (i.e. bronchial obstruction)

UNCOMPENSATED

M.V. = 6.0 liters

4.0 liters

NON-UNIFORM VENTILATION

UNIFORM BLOOD FLOW

mixed venous blood (A + B)

A

B

arterial blood (A - B)
Uniform ventilation non-uniform perfusion (i.e. pulmonary embolus)

UNCOMPENSATED

M.V. = 6.0 liters

V. = 4.0 liters

UNIFORM VENTILATION

NON-UNIFORM BLOOD FLOW

mixed venous blood (A + B)

arterial blood (A + B)
Hypoxemia: causes (2)

Oxygenation Failure

- Ventilation/Perfusion mismatch
- Diffusion limitation (on exercise)
 - Interstitial lung diseases
 - Emphysema
Thickened capillary alveolar interface (i.e. interstitial fibrosis)

M.V. 10.8 liters
T.V. 600 ml.
Freq. 18/min.

Sarcoidosis

W.M.

Dead space 110 ml. (assumed)

O. sat. 91%
Pco. 36 mm. Hg.
Hypoxemia: causes (2)

Oxygenation Failure

- Ventilation/Perfusion mismatch
- Diffusion limitation
- Anatomic R>L shunt
 - Intracardiac (ASD, VSD, ...)
 - Intrapulmonary (A-V malformations, fistulas)
Hypoxemia: causes (3)

- Decreased P_vO_2
 - Reduced cardiac output (Q_T)
 - Increased (tissue) oxygen extraction
 - Increased (tissue) oxygen consumption (VO_2)
Hypoxemia: consequences

- Desaturation → central cyanosis
- Chemoreceptor stimulation
 - ↑ Central respiratory drive
 - ↑ Output respiratory muscles
 - ↑ V_E and ↑ WOB: dyspnea
 - ↑ V_A and hypocapnia & respiratory alkalosis
Hypoxemia: consequences

- Tissue hypoxia
 - organ dysfunction: CNS, CV, kidneys
 - anaerobic metabolism \rightarrow lactic acidosis
- Pulmonary vasoconstriction
 - Pulmonary hypertension
 - Cor pulmonale & right heart failure
- Increased renal erythropoietin production
 - Secondary polycythemia
Abnormal Arterial Blood Gases

- Hypercapnia: high P_aCO_2
- Respiratory acidosis: low pH
Abnormal Arterial Blood Gases

- Hypercapnia: high P_aCO_2
 - Respiratory acidosis: low pH
- Hypocapnia: low P_aCO_2
 - Respiratory alkalosis: high pH
Henderson-Hasselbalch equation

\[\text{pH} = \text{pK} + \log \left[\text{HCO}_3^- \right] / 0.03 \times \text{PCO}_2 \]

- Hypercapnia leads to decreased pH, i.e. Respiratory acidosis
- Hypocapnia leads to increased pH, i.e. Respiratory alkalosis
Hypercapnia: 3 main causes

\[P_{a}CO_2 = \frac{VCO_2}{V_A} \]
- \(VCO_2 = \) CO\(_2\) production
- \(V_A = \) alveolar ventilation

1. Increased \(VCO_2 \)
2. Reduced \(V_A \)
3. Severe V/Q mismatching
Hypercapnia: causes (1)

- \(P_a \text{CO}_2 = \frac{V\text{CO}_2}{V_A} \)
 - \(V\text{CO}_2 = \text{CO}_2 \) production
 - \(V_A = \text{alveolar ventilation} \)

- **Increased** \(V\text{CO}_2 \)
 - Exercise with extreme effort
 - Fever and other hypermetabolic states
Hypercapnia : causes (2)

- $P_aCO_2 = \frac{VCO_2}{V_A}$
 - $VCO_2 = CO_2$ production
 - $V_A = alveolar ventilation$

- Reduced V_A : alveolar hypoventilation
 - Failure of the respiratory system as an air pump
 - Ventilatory Failure or Type II Respiratory failure
 - Any hypoxemia is secondary to hypercapnia, i.e., the P_A-aO_2 is normal
 - Extrapulmonary mechanism/cause of hypoxemia
Hypercapnia: causes (2)

Ventilatory Failure

- \(P_a CO_2 = \frac{VCO_2}{V_A} \)
 - \(VCO_2 = CO_2 \) production
 - \(V_A = \) alveolar ventilation

- Reduced \(V_A \): alveolar hypoventilation
 - Reduced respiratory drive (central controller)
 - Dysfunction of respiratory neuromuscular apparatus
 - Chest wall disorders including severe obesity
 - Severe Upper Airway Obstruction
Hypercapnia: causes (2)

Ventilatory Failure

- Reduced respiratory drive (central controller)
 - CNS disorders
 - Drug (illicit or not) overdose
 - Metabolic disorders
 - Obesity-hypoventilation syndrome (Pickwick syndrome)
 - Central alveolar hypoventilation
Hypercapnia: causes (2)

Ventilatory Failure

- Dysfunction of respiratory neuromuscular apparatus
 - Motor neurons (ALS, Poliomyelitis, ...)
 - Peripheral nerves (Guillain-Barré, Phrenic neuropathy, ...)
 - Myoneural junction (Myastenia, drugs, ...)
 - Muscle (Myopathy, metabolic disorders, malnutrition, ...)
- Chest wall disorders including severe obesity
- Severe asphyxiating Upper Airway Obstruction
Hypercapnia: causes (3)

- Severe V/Q mismatch
 - Severely reduced efficiency of the lung as a gas exchanger
 - $\rightarrow \downarrow O_2$ uptake \rightarrow hypoxemia
 - $\rightarrow \downarrow CO_2$ elimination \rightarrow hypercapnia
 - \rightarrow stimulation of chemoreceptors
 - \uparrow Central respiratory drive and $\uparrow V_A$
 - $\rightarrow \uparrow$ WOB: dyspnea
 - $\rightarrow P_aCO_2$ decreases towards but does not reach normal
 - \rightarrow less complete correction of P_aO_2 (poorly ventilated
 'shunt-like' regions keep bypassing venous blood)
Hypercapnia: consequences

- Hypoxemia with normal $P_{A-a}O_2$
- Respiratory acidosis: reduced pH
- If persistent:
 - HCO_3^- retention by the kidneys
 - Increased $[HCO_3^-]$ and positive BE
 - Low pH will increase to almost normal (but not above 7.4)

“Compensatory metabolic alkalosis”

- Acutely, $\Delta HCO_3^- = 0.1 \times \Delta P_aCO_2$
- Chronically, $\Delta HCO_3^- = 0.35 \times \Delta P_aCO_2$
Clinical signs of hypercapnia

- CNS: cerebral vasodilatation
 - Increased cerebral Q
 - Intracranial hypertension
 - Papilledema, headache
 - Lethargy, confusion progressing to coma → ‘carbonarcosis’

- Peripheral vasodilatation
 - Full bounding pulses with
 - Warm, cherry-red skin
Abnormal Arterial Blood Gases

- Hypocapnia: low $P_a\text{CO}_2$
 - Respiratory alkalosis: high pH
Hypocapnia: 1 main mechanism

- $P_aCO_2 = \frac{VCO_2}{V_A}$
 - $VCO_2 = CO_2$ production
 - $V_A = \text{alveolar ventilation}$

- (1) Increased V_A
Hypocapnia ~ alveolar hyperventilation: causes

- Stimulation of chemoreceptors
 - Hypoxemia
 - Metabolic acidosis
- Pulmonary J-receptor stimulation
- Tissue hypoxia
 - Anemia, CO-, Sulf-, or MetHb
 - Hypotension, shock, sepsis
- Fever, thyrotoxicosis, strenuous exercise
- Psychogenic: hyperventilation syndrome
Hypocapnia: consequences

- Respiratory alkalosis: increased pH
- If persistent:
 - \(\text{HCO}_3^- \) excretion by the kidneys
 - reduced \([\text{HCO}_3^-]\) and negative BE (= base deficit)
 - Elevated pH will decrease to almost normal (but not below 7.4)

“Compensatory metabolic acidosis”

- Acutely, \(\Delta \text{HCO}_3^- = 0.2 \times \Delta P_a\text{CO}_2 \)
- Chronically, \(\Delta \text{HCO}_3^- = 0.5 \times \Delta P_a\text{CO}_2 \)
Abnormal Arterial Blood Gases

- **Acidosis**: low pH
 - Respiratory
 - Metabolic

- **Alkalosis**: high pH
 - Respiratory
 - Metabolic
Metabolic acidosis

- Reduced HCO_3^-, hence reduced pH and negative BE (base deficit), due to
 - Acid [H^+] accumulation (and buffering by HCO_3^-)
 - Renal failure
 - Diabetes mellitus: ketoacidosis
 - Tissue hypoxia/hypoperfusion (shock): lactic acidosis
 - Intoxications: ASA, antifreeze, methanol, paraldehyde
 - Loss of HCO_3^-
 - diarrhea
Metabolic acidosis

- If persistent, the increase in \([\text{H}^+]\) leads to:
 - Chemoreceptor stimulation
 - Increased central respiratory drive
 - Increased \(V_E\) and \(V_A\) : hyperventilation
 - Hypocapnia
 - The low pH rises towards normal (not exceeding 7.4)
 - “compensatory respiratory alkalosis”
 - \(\Delta P_a\text{CO}_2 = 1 \text{ à } 1.3 \times \Delta \text{HCO}_3^-\)
Metabolic alkalosis

- Increased HCO_3^-, hence increased pH and positive BE, due to
 - HCO_3^- accumulation
 - Excessive ingestion of alkali
 - Drug intake: diuretics, corticosteroids
 - Cushing syndrome
 - Hypokalemia
 - Loss of acid
 - Loss of gastric acid: prolonged vomiting, nasogastric suction
 - Via kidneys
Metabolic alkalosis

- If persistent, the reduction in $[H^+]$ leads to:
 - Reduced chemoreceptor stimulation
 - Reduced central respiratory drive
 - Reduced V_E and V_A: hypoventilation
 - Hypercapnia
 - The increased pH will decrease towards normal (but not below 7.4)
 - “compensatory respiratory acidosis”
 - $\Delta P_{aCO_2} = 0.6 \times \Delta HCO_3^-$
Arterial Blood Gases: main use

- Note sampling conditions
- Careful sampling and handling

- Detection of Respiratory Failure
- Detection of Acid-Base disturbances
Interpretation of ABG

- **Oxygenation**
 - Look at P_aO_2 and S_aO_2
 - Calculate $P_{A-a}O_2$

- **Alveolar ventilation**
 - Look at P_aCO_2

- **Acid-Base status**
 - Look at pH, HCO_3^- and BE
Classification of Respiratory Failure

<table>
<thead>
<tr>
<th>Acute</th>
<th>Type I</th>
<th>Type II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoxemia</td>
<td>Hypoxemia with increased $P_{A-a}O_2$</td>
<td>Hypoxemia with normal $P_{A-a}O_2$</td>
</tr>
<tr>
<td>Hypocapnia</td>
<td>Hypocapnia</td>
<td>Hypercapnia</td>
</tr>
<tr>
<td>Respiratory alkalosis</td>
<td></td>
<td>Respiratory acidosis</td>
</tr>
<tr>
<td>Chronic</td>
<td>Hypoxemia</td>
<td>Hypoxemia</td>
</tr>
<tr>
<td>Hypocapnia</td>
<td>Hypocapnia</td>
<td>Hypercapnia</td>
</tr>
<tr>
<td>Compensated respiratory alkalosis</td>
<td>Due to HCO_3^- excretion and metabolic acidosis</td>
<td>Compensated respiratory acidosis</td>
</tr>
<tr>
<td>Due to HCO_3^- retention and metabolic alkalosis</td>
<td></td>
<td>Due to HCO_3^- retention and metabolic alkalosis</td>
</tr>
</tbody>
</table>
Classification of Respiratory Failure

<table>
<thead>
<tr>
<th></th>
<th>Acute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_aO_2</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>$P_{A-a}O_2$</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>P_aCO_2</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>pH</td>
<td>High</td>
<td>High normal</td>
</tr>
<tr>
<td>Type II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_aO_2</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>$P_{A-a}O_2$</td>
<td>Normal</td>
<td>High</td>
</tr>
<tr>
<td>P_aCO_2</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>pH</td>
<td>Low</td>
<td>Low normal</td>
</tr>
<tr>
<td>HCO_3^-</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>BE</td>
<td>negative</td>
<td>positive</td>
</tr>
</tbody>
</table>
Thank you for listening
Hope you enjoyed it, or at least learned something

Prof. Dr. W. Vincken
Head Respiratory Division
AZ VUB
Interpretation of ABG

- Oxygenation
 - reduced P_aO_2 and S_aO_2 60/88%
 - = hypoxemia and arterial desaturation
Interpretation of ABG

- Alveolar ventilation
 - Increased $P_a\text{CO}_2 = \text{hypercapnia}$ 60
- Acid-Base status
 - Look at pH, HCO_3^- and BE
Interpretation of ABG

- **Alveolar ventilation**
 - Increased P_aCO$_2$ = hypercapnia 60

- **Acid-Base status**
 - Reduced pH = acidosis 7.20
 - Normal HCO$_3^-$ and BE 24/0
 - = acute respiratory acidosis
Interpretation of ABG

- **Alveolar ventilation**
 - Increased P_aCO_2 = hypercapnia 60

- **Acid-Base status**
 - Minimally reduced pH = acidosis 7.36
 - Increased HCO_3^- and BE 32/+8

 = chronic respiratory acidosis with compensatory metabolic alkalosis
Interpretation of ABG

- Alveolar ventilation
 - Reduced $P_aCO_2 = \text{hypocapnia}$

- Acid-Base status
 - Look at pH, HCO_3^- and BE
Interpretation of ABG

- Alveolar ventilation
 - Reduced $P_aCO_2 = $ hypocapnia 30

- Acid-Base status
 - Increased pH = alkalosis 7.50
 - Normal HCO_3^- and BE 24/0

= acute respiratory alkalosis
Interpretation of ABG

- Alveolar ventilation
 - Reduced $P_a\text{CO}_2 = \text{hypocapnia}$ 30

- Acid-Base status
 - Minimally increased pH = alkalosis 7.42
 - Reduced HCO_3^- and BE 20/-4

= acute respiratory alkalosis with compensatory metabolic acidosis
Interpretation of ABG

- Alveolar ventilation
 - Normal $P_a\text{CO}_2 = \text{normocapnia}$ 40
Interpretation of ABG

- Alveolar ventilation
 - Normal $P_aCO_2 = \text{normocapnia}$
- Acid-Base status
 - Look at pH, HCO_3^- and BE
Interpretation of ABG

- **Alveolar ventilation**
 - Normal $P_a CO_2 = \text{normocapnia}$ 40

- **Acid-Base status**
 - Reduced pH = acidosis 7.27
 - Look at HCO_3^- and BE
Interpretation of ABG

- Alveolar ventilation
 - Normal $P_a CO_2 = $ normocapnia 40

- Acid-Base status
 - Reduced pH = acidosis 7.27
 - Reduced HCO_3^- and BE 16/-7
= acute metabolic acidosis
Interpretation of ABG

- **Alveolar ventilation**
 - Reduced P_aCO_2 = hypocapnia 30

- **Acid-Base status**
 - Minimally reduced pH = acidosis 7.37
 - Reduced HCO_3^- and BE 16/-7
 = chronic metabolic acidosis with compensatory respiratory alkalosis
Interpretation of ABG

- Alveolar ventilation
 - Normal $P_a CO_2 = \text{normocapnia}$ 40
Interpretation of ABG

- Alveolar ventilation
 - Normal $P_aCO_2 = \text{normocapnia}$ 40

- Acid-Base status
 - Look at pH, HCO_3^- and BE
Interpretation of ABG

- Alveolar ventilation
 - Normal $P_a\text{CO}_2 = \text{normocapnia}$ 40

- Acid-Base status
 - Increased pH = alkalosis 7.50
 - Look at HCO_3^- and BE
Interpretation of ABG

- **Alveolar ventilation**
 - Normal $P_aCO_2 = \text{normocapnia}$ 40

- **Acid-Base status**
 - Increased pH = alkalosis 7.50
 - Increased HCO_3^- and BE 32/+8

= acute metabolic alkalosis
Interpretation of ABG

- **Alveolar ventilation**
 - Increased P_aCO_2 = hypercapnia
 - $P_aCO_2 = 50$

- **Acid-Base status**
 - Minimally increased pH = alkalosis
 - $pH = 7.43$
 - Increased HCO_3^- and BE
 - $HCO_3^- = 32$ and $BE = +8$

= chronic metabolic alkalosis with compensatory respiratory acidosis
Classification of Respiratory Failure According to type of onset/duration

- Acute Respiratory Failure
- Chronic Respiratory Failure
- Acute on Chronic Respiratory Failure
Definition of Respiratory Failure

- Abnormal Arterial Blood Gases
 - Hypoxemia with $P_aO_2 < 60$ mmHg without or with
 - Hypercapnia with $P_aCO_2 > 50$ mmHg
- Without ABGs No Diagnosis of RF
Classification of Respiratory Failure According to type of ABG abnormality

- Respiratory Failure Type I
 - Hypoxemia without hypercapnia
- Respiratory Failure Type II
 - Hypoxemia with hypercapnia
Classification of Respiratory Failure According to type of ABG abnormality

- **Type I RF ~ Oxygenation Failure**
 - Failure of the lung as a gas exchanger (O_2 and CO_2)

- **Type II RF ~ Ventilatory Failure**
 - Failure of the respiratory system as an air pump

- **Mixed Failure**
Oxygenation Failure

- Reduced P_aO_2 (hypoxemia)
- Increased $P_{A-a}O_2$
- Reduced P_aCO_2 (hypocapnia)
- Increased pH (respiratory alkalosis)
- If persistent: compensatory metabolic acidosis (renal bicarbonate excretion)
Oxygenation Failure

- Abnormal Chest X-Ray
 - Diffuse pulmonary diseases
 - Localised pulmonary diseases
- Normal Chest X-Ray
 - Anatomic R>L shunts
 - Asthma (except for hyperinflation)
 - Pulmonary embolism/vascular disease
Ventilatory Failure

- Increased $P_a CO_2$ (hypercapnia)
- Reduced pH (respiratory acidosis)
- Reduced $P_a O_2$ (pro rata hypoxemia)
- Normal $P_{A-a}O_2$

If persistent: compensatory metabolic alkalosis (renal bicarbonate retention)
 - Acutely, $\Delta HCO_3^- = 0.1 \times \Delta P_a CO_2$
 - Chronically, $\Delta HCO_3^- = 0.35 \times \Delta P_a CO_2$
Uniform ventilation and perfusion

IDEAL

V = 4.0 liters

M.V. = 6.0 liters

UNIFORM VENTILATION

UNIFORM BLOOD FLOW

mixed venous blood
(A + B)

arterial blood
(A + B)

A

B
OXYGEN SATURATION (%)

\[P_{50} = 26.6 \text{ torr} \]